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Abstract 
 

This paper presents a new successive-cancellation 
decoding architecture for long polar codes. In the 
proposed decoder, unnecessary recursive 
computation is eliminated when syndrome check is 
satisfied for corresponding constituent codes. Due to 
a simple syndrome check, a large number of node 
computations can be saved by replacing recursive 
computations with a simple calculation. The 
proposed decoding architecture to check syndromes 
is presented to prohibit an increase of latency and 
critical path delay.  
 
Keywords: polar codes, error-correction codes, 

pruning method, optimization. 

 

1. Introduction 
 

Polar codes have recently gather significant 

attentions due to its channel achieving property, and 

many applications including 5G communication 

systems and massive solid-state drive systems are 

considering its applicability [1]. Although the polar 

codes can provide a good error correction capability, 

traditional successive-cancellation decoding [1] and 

its list variant [2] algorithms suffer from a long 

latency problem. Since the traditional algorithms 

adopt divide-and-conquer approach, a long latency 

problem is inevitable, and it might lead a huge 

amount of power consumptions. Recently, many 

literatures are proposed to mitigate this problem [3]-

[5], and up to our knowledge [6] shows the best 

pruning performance. In this manuscript, we presents 

a syndrome-based decoding architecture based on [6] 

and analyze its practical implementation. 

 

2. Review of Syndrome-Check Pruning 
 

The polar decoding can be considered as tree 

structure. Let us suppose that a node n receives soft 

information αn from the parent node np. First, the 

node n calculates the left soft information αnl using 

min-sum approximation as 

 

[ ] s( [2 1]) s( [2 ]) min(| [2 1]|, | [2 ]|)nl n n n ni i i i i� � � � �� � � � � (1) 

 

Next, the decoder moves the left child node nl. After 

receiving the left hard information βnl from the left 

child node, the decoder moves to the right child node 

nr accompanying with the right soft information  

 

[ ] (1 2 [ ]) [2 1] [2 ]nr nl n ni i i i� � � �� � � �        (2) 

 

When receiving the right hard information βnr from 

the right child node, the decoder calculates the node 

n hard information βn as (3), and it sends the hard 

information to the parent node np. 

 

[2 1] [ ] [ ], [2 ] [ ]n nl nr n nri i i i i� � � � �� � � �      (3) 

 

where� denotes the XOR operation. 

Syndrome-check pruning method [6] eliminates 

unnecessary soft information computations of (1) and 

(2) by checking syndromes for frozen bit positions as  

 

[  ] ( )n n nSYN frozen bit h G��                        (4) 

 

where Gn denotes a generator matrix of node n. 
When a decoder satisfies the syndrome check, the 

proposed method eliminates the recursive 

computations, and it is replaced with a simple 

calculation as (5) 
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where h(x) is a hard decision function and ˆnu  is 

estimated bits for node n. 
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3. Hardware Architecture 
 

Figure 1 presents syndrome-check based decoding 

architecture based on [6] by employing the semi-

parallel structure [7]. It consists of LLR memory, 

syndrome check unit, processing elements, and 

partial sum update unit. The LLR memory contains 

the channel LLRs and soft information. The 

syndrome check unit identifies prunable codes based 

on (4), and the processing elements selectively 

calculate soft information of (2) and (3). The partial 

sum unit computes partial sums of hard information, 

which is needed in the processing units.   

It is important to decide when to perform the 

syndrome check. If the syndrome check is activated 

before the traditional SC decoding is initiated, it may 

increase the latency drastically. As the syndrome 

check and the traditional SC decoding can be carried 

out simultaneously in Fig. 1, we decide that the 

syndrome is checked while the soft information of 

the traditional SC decoding is being calculated so as 

to achieve the benefit of the syndrome check 

algorithm [6]. Under this architecture, no additional 

latency is demanded when the syndrome check fails, 

since the traditional SC decoding can continue 

seamlessly. When the syndrome check is satisfied, on 

the other hand, the latency analysis should take into 

account the time to check the syndromes and obtain 

the outputs. Fortunately, the results of the estimated 

bit can be directly used to obtain the syndrome check, 

since the parity check matrix is a part of the 

generator matrix according to (4) and (5), and thus 

the time to compute a single matrix multiplication is 

only taken at the expense of pruning a node.  

Furthermore, the syndrome check block can be 

realized with combinational logics. More precisely, 

the matrix multiplication can be realized by a 

combination of XOR gates. Therefore, the proposed 

algorithm can significantly improve the decoding 

latency at the expense of a small hardware increase. 

 

4. Conclusion 
 

A new decoding architecture is proposed to adopt 

syndrome-check pruning method without introducing 

an increase of latency and critical path delay. The 

proposed architecture can provide a practical 

realization for long polar codes by mitigating long 

latency. 
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Fig. 1. The proposed Syndrome-check Pruning Architecture.  
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