
Syndrome-aided Pruning Architecture for
Successive-Cancellation Decoding of Polar Codes

Dohyun Ryu, Hyeonkyu Kim, and Hoyoung Yoo

Department of Electronics Engineering,
Chungnam National University,

Daejeon, 34134, Republic of Korea
dhryu.cas@gmail.com; hkkim.cas@gamil.com; hyyoo@cnu.ac.kr;

Abstract

This paper presents a new successive-cancellation
decoding architecture for long polar codes. In the
proposed decoder, unnecessary recursive
computation is eliminated when syndrome check is
satisfied for corresponding constituent codes. Due to
a simple syndrome check, a large number of node
computations can be saved by replacing recursive
computations with a simple calculation. The
proposed decoding architecture to check syndromes
is presented to prohibit an increase of latency and
critical path delay.

Keywords: polar codes, error-correction codes,

pruning method, optimization.

1. Introduction

Polar codes have recently gather significant

attentions due to its channel achieving property, and

many applications including 5G communication

systems and massive solid-state drive systems are

considering its applicability [1]. Although the polar

codes can provide a good error correction capability,

traditional successive-cancellation decoding [1] and

its list variant [2] algorithms suffer from a long

latency problem. Since the traditional algorithms

adopt divide-and-conquer approach, a long latency

problem is inevitable, and it might lead a huge

amount of power consumptions. Recently, many

literatures are proposed to mitigate this problem [3]-

[5], and up to our knowledge [6] shows the best

pruning performance. In this manuscript, we presents

a syndrome-based decoding architecture based on [6]

and analyze its practical implementation.

2. Review of Syndrome-Check Pruning

The polar decoding can be considered as tree

structure. Let us suppose that a node n receives soft

information αn from the parent node np. First, the

node n calculates the left soft information αnl using

min-sum approximation as

[] s([2 1]) s([2]) min(| [2 1]|, | [2]|)nl n n n ni i i i i� � � � �� � � � � (1)

Next, the decoder moves the left child node nl. After

receiving the left hard information βnl from the left

child node, the decoder moves to the right child node

nr accompanying with the right soft information

[] (1 2 []) [2 1] [2]nr nl n ni i i i� � � �� � � � (2)

When receiving the right hard information βnr from

the right child node, the decoder calculates the node

n hard information βn as (3), and it sends the hard

information to the parent node np.

[2 1] [] [], [2] []n nl nr n nri i i i i� � � � �� � � � (3)

where� denotes the XOR operation.

Syndrome-check pruning method [6] eliminates

unnecessary soft information computations of (1) and

(2) by checking syndromes for frozen bit positions as

[] ()n n nSYN frozen bit h G�� (4)

where Gn denotes a generator matrix of node n.
When a decoder satisfies the syndrome check, the

proposed method eliminates the recursive

computations, and it is replaced with a simple

calculation as (5)

(), (),

ˆ ˆ() , ()

nl nl nr nr

nl nl n nr nr n

h h

u h G u h G

� � � �

� �

� �

� �
 (5)

where h(x) is a hard decision function and ˆnu is

estimated bits for node n.

- 784 -

3. Hardware Architecture

Figure 1 presents syndrome-check based decoding

architecture based on [6] by employing the semi-

parallel structure [7]. It consists of LLR memory,

syndrome check unit, processing elements, and

partial sum update unit. The LLR memory contains

the channel LLRs and soft information. The

syndrome check unit identifies prunable codes based

on (4), and the processing elements selectively

calculate soft information of (2) and (3). The partial

sum unit computes partial sums of hard information,

which is needed in the processing units.

It is important to decide when to perform the

syndrome check. If the syndrome check is activated

before the traditional SC decoding is initiated, it may

increase the latency drastically. As the syndrome

check and the traditional SC decoding can be carried

out simultaneously in Fig. 1, we decide that the

syndrome is checked while the soft information of

the traditional SC decoding is being calculated so as

to achieve the benefit of the syndrome check

algorithm [6]. Under this architecture, no additional

latency is demanded when the syndrome check fails,

since the traditional SC decoding can continue

seamlessly. When the syndrome check is satisfied, on

the other hand, the latency analysis should take into

account the time to check the syndromes and obtain

the outputs. Fortunately, the results of the estimated

bit can be directly used to obtain the syndrome check,

since the parity check matrix is a part of the

generator matrix according to (4) and (5), and thus

the time to compute a single matrix multiplication is

only taken at the expense of pruning a node.

Furthermore, the syndrome check block can be

realized with combinational logics. More precisely,

the matrix multiplication can be realized by a

combination of XOR gates. Therefore, the proposed

algorithm can significantly improve the decoding

latency at the expense of a small hardware increase.

4. Conclusion

A new decoding architecture is proposed to adopt

syndrome-check pruning method without introducing

an increase of latency and critical path delay. The

proposed architecture can provide a practical

realization for long polar codes by mitigating long

latency.

Acknowledgement

This work was supported by Institute for Information

& communications Technology Promotion (IITP)

grant funded by the Korea government (MSIT) (No.

2013-0-00405, Development of Device Collaborative

Giga-Level Smart Cloudlet Technology)

References

[1] E. Arıkan, “Channel polarization: A method for

constructing capacity-achieving codes for symmetric

binary-input memoryless channels,” IEEE Trans. Inf.
Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” in

Proc. IEEE Int. Symp. Inform. Theory, 2011, pp. 1–5.

[3] A. Alamdar-Yazdi and F. R. Kschischang, “A

simplified successive- cancellation decoder for polar

codes,” IEEE Commun. Lett., vol. 15, no. 12, pp. 1378–

1380, Dec. 2011.

[4] G. Sarkis and W. J. Gross, “Increasing the throughput

of polar decoders,” IEEE Commun. Lett., vol. 17, no. 4, pp.

725–728, April 2013.

[5] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W.J.

Gross. “Fast polar decoders: algorithm and

implementation,” IEEE J. Sel. Areas Commun., vol. 32, no.

5, pp. 946−957, May 2014.

[6] H. Yoo and I.-C. Park, “Efficient Pruning for

Successive-Cancellation Decoding of Polar Codes,” IEEE
Communications Letters, vol. 20, no. 12, pp. 2362-2365,

Dec. 2016.

[7] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross,

“A semi-parallel successive-cancellation decoder for polar

codes,” IEEE Trans. Signal Process., vol. 61, no. 2, pp.

289–299, Jan. 2013.

Control unit

LLR

memory

Processing Elements

(PEs)

Partial Sum

Update

(PSU)

addr
nFG

enable

Channel
LLR Decoded bit

Partial sum

Syndrome Check

(SC)

enable syndromes

αv

βv

Fig. 1. The proposed Syndrome-check Pruning Architecture.

- 785 -

